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ABSTRACT 
 

Nature-inspired search algorithms have proved to be successful in solving real-world 
optimization problems. Firefly algorithm is a novel meta-heuristic algorithm which simulates 
the natural behavior of fireflies. In the present study, optimum design of truss structures with 
both sizing and geometry design variables is carried out using the firefly algorithm. 
Additionally, to improve the efficiency of the algorithm, modifications in the movement stage 
of artificial fireflies are proposed. In order to evaluate the performance of the proposed 
algorithm, optimum designs found are compared to the previously reported designs in the 
literature. Numerical results indicate the efficiency and robustness of the proposed approach. 
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1. INTRODUCTION 
 

Since truss structures are widely used for structural applications, optimum design of this type 
of structures has a great importance. Generally, in design optimization of truss structures, the 
objective is to find the best feasible structure with a minimum weight. In other words, 
optimum design of truss structures is a search for the best possible arrangements of design 
variables according to the determined constrains. Design variables involved in optimum 
design of truss structures can be considered as sizing, geometry, and topology variables. In 
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sizing optimization of truss structures, the aim is to find the optimum values for cross 
sectional areas of the elements. Geometry optimization means to determine the optimum 
positions of the nodes while presence or absence of the members are considered in the 
topology optimization. 

Meta-heuristic approaches such as genetic algorithms [1], simulated annealing [2], particle 
swarm optimization [3], ant colony optimization [4, 5], harmony search method [6]  etc., have 
been widely employed by researchers for solving optimization problems so far. These 
algorithms do not require gradients of objective functions, can deal with both discrete and 
continuous variables, and are able to handle both discrete and continuous variables. Such 
features are some reasons of popularity of meta-heuristic algorithms.  

The firefly algorithm, proposed by Yang [7, 8], is a novel meta-heuristic approach which 
simulates the natural behavior of fireflies. In [8, 9] the superiority of firefly algorithm based 
approaches to both PSO and GA is demonstrated using various test functions. Additionally, 
satisfactory application of firefly algorithm to solving nonlinear design problems is reported in 
[10]. In [10] the firefly algorithm is employed to solve a standard pressure vessel design 
optimization problem. Recently, a discrete firefly algorithm with local search has been 
proposed for solving permutation flow shop scheduling problems [11].  

In the present study, having assumed the topology of structures to be fixed, the authors 
carried out both sizing and geometry optimization of different types of truss structures using a 
modified firefly algorithm. The outline of the following sections of the paper is as follows: 
Section 2 contains an introduction to the firefly algorithm. In section 3, design optimization of 
truss structures using the firefly algorithm is described in detail. Section 4 presents the 
proposed modification in the movement stage of fireflies. In Section 5 the performance of the 
proposed algorithm is evaluated using typical design optimization problems of planar and 
spatial truss structures. Finally, section 6 includes the conclusion of the present study. 

  
 

2. FIREFLY ALGORITHM 
 

The firefly algorithm proposed by Yang [7, 8] is a recently developed search algorithm based 
on the natural behavior of fireflies. As described in [8], in order to develop the firefly 
algorithm, natural flashing characteristics of fireflies have been idealized using the following 
three rules: 
1) All of the fireflies are unisex, therefore, one firefly will be attracted to other fireflies 

regardless of their sex. 
2) Attractiveness of each firefly is proportional to its brightness, thus for any two flashing 

fireflies, the less bright firefly will move towards the brighter one. The attractiveness is 
proportional to the brightness and they both decrease as their distance increases. If there 
is no brighter one than a particular firefly, it will move randomly. 

3) The brightness of a firefly is determined according to the nature of the objective 
function. 

The attractiveness of a firefly is determined by its brightness or light intensity which is 
obtained from the objective function of the optimization problem. However, the attractiveness 
β, which is related to the judgment of the beholder, varies with the distance between two 
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fireflies. The attractiveness β can be defined by [10]: 
 

 2r  o e γ−β=β , (1) 
 

where r is the distance of two fireflies, o β  is the attractiveness at r = 0, and γ  is the light 
absorption coefficient. The distance between two fireflies i and  j at i x  and j x , respectively, 
is determined using the following equation: 

 

 ∑
=

−=−=
d

1k

 k j,k i,jiij xx 2   )(xxr , (2) 

 
where ki, x  is the k-th parameter of the spatial coordinate i x  of the i-th firefly. In the firefly 
algorithm, the movement of a firefly i towards a more attractive (brighter) firefly j is 
determined by the following equation [10]:  

 

  ii jijii αε+−β+= γ− )xx(exx  
2 
 r o   , (3) 

 
where the second term is related to the attraction, while the third term is randomization with 
the vector of random variables i ε  using a normal distribution. More detailed descriptions of 
the firefly algorithm can be found in [7-10]. 

 
 

3. DESIGN OPTIMIZATION OF TRUSS STRUCTURES USING THE FIREFLY 
ALGORITHM 

 
3.1 Problem formulation 

Design optimization of truss structures can be formulated as follows [12]: 
 

 Find x = {x1 , x 2 , …, x d }, (4a) 
 
 ku k kl xxx ≤≤  , k = 1, 2, . . . , d (4b) 
 
to minimize f(x) = W(x) + P(x) (5) 
 

subjected to g i (x) =
ai

i

σ
σ  - 1  ≤ 0         i = 1, 2, . . . , m (6) 

 

 g j (x) =
aj

j

δ
δ  - 1 ≤ 0          j = 1, 2, . . . , h, (7) 
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where in equation (4a) and (4b), x is a candidate design (firefly), x kl  and x ku  are the lower 
and upper bounds of the k-th design variable x k , and d is the total number of parameters of a 
firefly. In equation (5), f(x) is the objective function of the truss optimization problem, W(x) is 
the weight of the structure and P(x) is the penalty function. In equation (6) and (7), g i  and g j  
are stress and displacement constraints, respectively, σ i  is the stress in the i-th member, σ ai  is 
the value of the allowable stress for the i-th member,  jδ  is the displacement in the direction of 
the j-th degree of freedom and δ aj is the allowable displacement in the same direction. Here, 
m is the number of truss members and h is the number of active degrees of freedom. Since the 
present optimization problem is a weight minimization problem, therefore, the brightness or 
light intensity of a firefly can be assumed to be the inverse of the corresponding objective 
function value.  

 
3.2 Penalty function 

In order to handle the predefined constraints of the design optimization problem, we used the 
following penalty function proposed by Rajeev and Krishnamoorthy [13]: 

 
 KC)x(W)x(P = , (8a) 

 

 )x(gC
1

∑
=

=
s

r
r , (8b) 

 
where W(x) is the weight of the truss structure, K is a penalty constant, and g r  is the amount 
of violation of r-th constraint. In equation (8b), s is the total number of constrain evaluations 
for each firefly. In the present study an adaptive penalty function proposed in [14] is employed 
wherein K initiates from a minimum value in the beginning of the optimization process and 
then gets modified in each generation as follows: 

   
  K(t) = K(t-1) +∆K            if the best firefly is infeasible, (9a) 
 
                               K(t) = K(t-1) - ∆K/2         if the best firefly is feasible, (9b) 

 
where ∆K is the step size, and K(t) is the value of parameter K in the t-th generation. In this 
paper, the term generation is assumed to be equivalent to the number of structural analyses. 

 
 

4. MODIFIED MOVEMENT STAGE 
 

As mentioned before, in the firefly algorithm, the movement of a firefly i towards a brighter 
firefly j is determined by equation (3). Since j x  is brighter than i x , we propose to update the 
position of firefly i based on the current position of firefly j. Therefore, instead of moving 
firefly i towards j, we propose searching the vicinity of firefly j which is a more reliable area. 
To do this, we replaced i x  by j x  equation (3) and used the following equation: 
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  i ijijj i αε+−β+= γ− )xx(exx  
2 
 r o   (10)  

 
In this study, a firefly i is compared to all members of the population in order to find 

brighter fireflies. In equation (10), i ε  is chosen using a normal distribution. Normal 
distribution has two parameters: a mean value and a standard deviation. In this study the mean 
value of the normal distribution is set to zero and the standard deviation is taken as the 
standard deviation of k-th parameter of all fireflies in each generation. This method of 
selecting the standard deviation of normal distribution can be found in [14]. In the present 
study, the parameters of fireflies which are not created within the bounds of design variables 
(sizing and geometry variables) are changed into the boundary values. Additionally, in case of 
discrete optimization, the values of discrete design variables (sizing variables) are changed 
into the values of nearest available sections. To avoid missing the brighter fireflies of the 
population, the position of a firefly is updated only if the new position found is better than the 
old one. Therefore, in the process of optimization each candidate design will be replaced only 
with a better design. 

 
 

5. NUMERICAL EXAMPLES 
 

5.1. Outline and parameter setting 

In this section the performance of the proposed algorithm is evaluated using typical 
optimization examples of truss structures. For each example, the algorithm is executed 50 
times and the best design found is reported. Optimum designs found, are compared to the 
previously reported results by other researchers. The general results of all 50 runs are given in 
Table 9. 

For all examples studied in this section, a population of 50 fireflies is employed; the range 
of 0.5 to 1.5 is chosen for the penalty constant (K) with a step size (∆K) of 0.1 [14]. The 
values of o β  and γ  are both taken as 1 [10] and α  is set to 0.5. The maximum number of 
structural analyses for examples 1 to 3 is 10000, and for the last example is 15000. Therefore, 
the algorithm terminates when the maximum number of structural analyses  
is met.  

 
5.2. Example 1: Fifteen-bar truss structure 

The sizing and geometry optimization of a 15-bar planar truss structure is performed in this 
example. The initial geometry of the truss is shown in Figure 1. A vertical load of 10 kips 
(44.48 kN) is applied at node 8. The stress limit is 25 ksi (172.369 MPa) in both tension and 
compression for all members. The material density is 0.1 lb/in. 3 (2767.99 kg/m 3 ) and the 
modulus of elasticity is 10,000 ksi (68,947.6 MPa). For geometry optimization nodes 2, 3, 6 
and 7, are allowed to move in both x and y directions; where nodes 6 and 7 have the same x 
coordinates as joints 2 and 3 respectively. Nodes 4 and 8 are permitted to move only in y 
direction. This example has totally 23 design variables including 15 sizing variables (cross-
sectional areas of bars) and 8 geometry variables (x 2 = x 6 , x 3 = x 7 , y 2 , y 3 , y 4 , y 6 , y 7 , 
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y8 ).The available profile list for sizing variables is as follows: S = {0.111, 0.141, 0.174, 0.22, 
0.27, 0.287, 0.347, 0.44, 0.539,  0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.8, 
3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 
19.18} in. 2 . Table 2 gives the limits of geometry variables and Table 1 contains the results of 
optimization. 

 

Table 1. Comparison of results for the fifteen-bar truss structure 

Design 
variables 

Wu and 
Chow [15] 

Tang et 
al. [16] 

Hwang and 
He [17] 

Rahami et 
al. [18] 

The present 
work 

Sizing variables (in.2)  
A1 1.174 1.081 0.954 1.081 0.954 
A2 0.954 0.539 1.081 0.539 0.539 
A3 0.44 0.287 0.44 0.287 0.111 
A4 1.333 0.954 1.174 0.954 0.954 
A5 0.954 0.954 1.488 0.539 0.539 
A6 0.174 0.22 0.27 0.141 0.287 
A7 0.44 0.111 0.27 0.111 0.111 
A8 0.44 0.111 0.347 0.111 0.111 
A9 1.081 0.287 0.22 0.539 0.174 

A10 1.333 0.22 0.44 0.44 0.440 
A11 0.174 0.44 0.347 0.539 0.347 
A12 0.174 0.44 0.22 0.27 0.270 
A13 0.347 0.111 0.27 0.22 0.270 
A14 0.347 0.22 0.44 0.141 0.287 
A15 0.44 0.347 0.22 0.287 0.111 

Geometry variables (in.)  
X2 123.189 133.612 118.346 101.5775 128.4213 
X3 231.595 234.752 225.209 227.9112 246.3209 
Y2 107.189 100.449 119.046 134.7986 123.4423 
Y3 119.175 104.738 105.086 128.2206 116.0383 
Y4 60.462 73.762 63.375 54.863 51.7145 
Y6 −16.728 −10.067 −20 −16.4484 −11.242 
Y7 15.565 -1.339 -20 -13.3007 -17.662 
Y8 36.645 50.402 57.722 54.8572 50.5825 

Weight (lb) 120.528 79.82 104.573 76.6854 74.692 
Table 2. Bounds of geometry variables of example 1 

Design variable (in.) Lower bound Upper bound 
X2 100 140 
X3 220 260 
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Y2 100 140 
Y3 100 140 
Y4 50 90 
Y6 −20 20 
Y7 −20 20 
Y8 20 60 

 
5.3. Example 2: Eighteen-bar truss structure 

The 18-bar truss structure, shown in Figure 2, is chosen for both sizing and geometry 
optimization. Five  vertical loads of  20 kips (88.964 kN) are acting on nodes 1, 2, 4, 6 and 8. 
The material density is 0.1 lb/in. 3  (2767.99 kg/m 3 ) and the modulus of elasticity, E, is 10,000 
ksi (68,947.6 MPa). The stress limit is 20 ksi(137.895 MPa) in both tension and compression 
for all members. The Euler buckling strength for the i-th member with a cross-sectional area 
of A i and length of L i is determined by −4EA i / L 2

i , ( i = 1, 2, . . . , 18). The members of the 
structure are linked into 4 groups, considered as 4 sizing variables. The cross-sectional areas 
of members are chosen from the set: S = {2, 2.25, 2.5, . . . , 21.25, 21.5, 21.75} in. 2 . Nodes 
3, 5, 7 and 9 are allowed to move in both x and y directions. In this case 8 geometry variables 
are added to the problem. Therefore there are 12 design variables in this example. 

The boundaries of geometry variables are given in Table 3. The results of optimization are 
given in Table 4. 

 

y

x

3a

a

54

1 2 3

6

7 8 9

(4)(1)

(8)(7)(6)(5) P

(2) (3)

10 141211 13 15

(4 )

(8)

a = 120 in. 
 

(a) (b) 

(c) 

 

Figure 1. (a) Fifteen-bar truss structure; (b) Optimum layout of the 15-bar truss; (c) Position of 
the nodes, 4 and 8 

Table 3. Bounds of geometry variables of example 2 

Design variable (in.) Lower bound Upper bound 
X3 775 1225 
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X5 525 975 
X7 275 725 
X9 25 475 
Y3 −225 245 
Y5 −225 245 
Y7 −225 245 
Y9 −225 245 

 

y

x
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a
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16 12 8 4 1

10 6

17 13 9 5
215 11 7 3

(1)(2)(4)(6)(8)(10)

(3)(5)(7)(9)(11)

P P PP P

 
Figure 2a. Eighteen-bar truss structure, a = 250 in 

 
Figure 2b. Optimum layout of the 18-bar truss 

 
5.4. Example 3: Twenty five-bar space truss  

The sizing and geometry optimization of the 25-bar space truss (Figure 3) in considered in this 
example. The loading data is given in Table 5. The stress limit is 40 ksi (275.79 MPa) in both 
tension and compression for all members, and the displacement of all nodes in directions x, y 
and z is limited to ±0.35 in. (±0.889 cm). The density of the material is 0.1 lb/in. 3  (2767.99 
kg/m 3 ) and the modulus of elasticity is 10,000 ksi (68,947.6 MPa). As shown in Table 7, the 
members of the truss are linked into 8 groups, considered as 8 sizing variables. The sizing 
variables are chosen from the following set: S = {0.1a (a = 1, . . . , 26), 2.8, 3, 3.2, 3.4} in. 2 . 
For geometry optimization, the nodes 3, 4, 5 and 6 are allowed to move in all x, y and z 
directions, and the nodes 7, 8, 9 and 10 are allowed to move only in x and y directions. Since 
the structure is symmetric, there are 5 geometry variables (x 4 = x 5 = −x 3 = −x 6 , x 8 = x 9 = 
−x 7 = −x10 , y 3 = y 4 = −y 5 = −y 6 , y 7 = y8 = −y 9 = −y10 , z 3 = z 4 = z 5 = z 6 ) in this example. 
The limits of geometry variables and the results of optimization are given in Tables 6 and 7 
respectively.  
 

Table 4. Comparison of results for the eighteen-bar truss structure 
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Design 
variables Members 

Hasançebi 
and Erbatur 

[19] 

Kaveh and 
Kalatjari 

[20] 

Rahami 
et al. 
[18] 

The 
present 
work 

Sizing variables (in. 2 )  
G1 1, 4, 8, 12, 16 12.50 12.25 12.75 12.5 
G2 2, 6, 10, 14, 18 18.25 18 18.5 18 
G3 3, 7, 11, 15 5.5 5.25 4.75 5.25 
G4 5, 9, 13, 17 3.75 4.25 3.25 3.75 

Geometry variables (in.)  
X3  933 913 917.4475 913.6544 
Y3  188 186.8 193.7899 188.0802 
X5  658 650 654.3243 646.7496 
Y5  148 150.5 159.9436 149.8965 
X7  422 418.8 424.4821 416.7127 
Y7  100 97.4 108.5779 99.8661 
X9  205 204.8 208.4691 204.1377 
Y9  32 26.7 37.6349 31.5643 

Weight (lb)  4574.28 4547.9 4530.7 4527.96 
 

Table 5. Loading of spatial 25-bar truss  

Node Fx (kips)  Fy (kips) Fz (kips) 
1 1  −10  −10  
2 0 −10  −10  
3 0.5  0 0 
6 0.6  0 0 

 
Table 6. Bounds of geometry variables of example 3 

Design variable (in.) Lower bound  Upper bound  
X4 20 60 
Y4 40 80 
Z4 90 130 
X8 40 80 
Y8 100 140 

 

Table 7. Comparison of results for the spatial 25-bar truss structure 

Design 
variables Members Wu and 

Chow [15] 
Tang et 
al. [16] 

Kaveh and 
Kalatjari 

[20] 

Rahami 
et al. [18] 

The 
present 
work 
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Sizing variables (in. 2 )  
G1  1 0.1 0.1 0.1 0.1 0.1 
G2  2, 3, 4, 5 0.2 0.1 0.1 0.1 0.1 
G3 6, 7, 8, 9 1.1 1.1 1.1 1.1 1 
G4 10, 11 0.2 0.1 0.1 0.1 0.1 
G5 12, 13 0.3 0.1 0.1 0.1 0.1 
G6 14, 15, 16, 17 0.1 0.2 0.1 0.1 0.1 
G7 18, 19, 20, 21 0.2 0.2 0.1 0.2 0.1 
G8 22, 23, 24, 25 0.9 0.7 1 0.8 0.9 

Geometry variables (in.)  
X4  41.07 35.47 36.23 33.0487 37.5729 
Y4  53.47 60.37 58.56 53.5663 54.4903 
Z4  124.6 129.07 115.59 129.9092 130 
X8  50.8 45.06 46.46 43.7826 51.8904 
Y8  131.48 137.04 127.95 136.8381 139.5662 

Weight (lb)  136.2 124.94 124 120.1149 117.264 
 

5.5. Example 4: One hundred twenty-bar dome truss  

The sizing and geometry optimization of the 120-bar dome truss, shown in Figure 4, is 
performed in [21]. Here, only the sizing optimization of the structure is considered. The 
structure is subjected to vertical loading at all unsupported nodes. The loads are taken as -
13.49 kips (-60 kN) at node 1, -6.744 kips (-30 kN) at nodes 2 to 14, and -2.248 kips (-10 
kN) in the rest of the nodes. The minimum allowable cross-sectional area of each member is 
limited to 0.775 in. 2  (5 cm 2 ). The allowable tensile stress is 0.6F y  and the compressive 
stress constraint 

 b
 iσ of member i is as follows [22]: 
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where F y is the yield stress of steel, E is the modulus of elasticity, λ i  is the slenderness ratio  
(λ i = kL i /r i ), k is the effective length factor, L i  is the length of the member, r i  is the radius 
of gyration,  and y2 FE2C π= . Here, the material density is 0.288 lb/in.3 (7971.81 kg/m 3 ), 
F y  = 58 ksi (400 MPa), E = 30,450 ksi (210,000 MPa), and r i = 0.4993A 6777.0

i for the pipe 
sections [6]. In this example, two cases of displacement constraints are considered.  

Case 1: no displacement constraints is imposed; 
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Case 2: the displacement of all nodes in directions x, y and z is limited to ±0.1969 in.  
Table 8 gives the results of optimization for both cases. 
 

L 1  = 75 in.         L 2  = 100 in.         L 3  = 200 in.  
 

 
Figure 3. Spatial twenty five-bar truss  

 
Table 8. Comparison of results for the 120-bar dome truss 

Case 1 Case 2  
Design 

variables Lee and Geem [6] The present 
work 

Lee and Geem 
[6] 

The present 
work 

Sizing variables (in. 2 )  
A1 3.295 3.3293 3.296 3.3005 
A2 2.396 2.4384 2.789 2.7481 
A3 3.874 4.0168 3.872 3.9036 
A4 2.571 2.5918 2.57 2.5713 
A5 1.15 1.1823 1.149 1.2889 
A6 3.331 3.4513 3.331 3.4089 
A7 2.784 2.7854 2.781 2.8150 

Weight (lb) 19707.77 20016.67 19893.34 20125.35 
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a1  = 546.61 in.  a 2  = 984.252 in.  a 3  = 1251.02 in. 

h 1  = 118.11 in.  h 2 = 230.315 in.  h 3 = 275.591 in.  
Figure 4. One hundred twenty-bar dome truss 

 
 

6. CONCLUSION 
 

Firefly algorithm is a novel nature-inspired algorithm based on the flashing characteristics of 
fireflies. In the present study, an optimization method based on the firefly algorithm is 
proposed. Both sizing and geometry optimization of different types of truss structures under 
stress, displacement and buckling constraints are carried out and numerical results are 
compared to the previously reported results in the literature. Additionally, for all examples, the 
general performance of the algorithm in 50 runs is reported (see Table 9). Numerical results 
indicate the robustness and efficiency of the proposed method in optimum design of truss 
structures. However, further research is required in order to determine the performance of 
firefly algorithm based methods in topology optimization of truss structures. 
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Table 9. General performance of the algorithm in 50 runs 

Example  
Number of 
structural 
analyses 

Minimum 
weight (lb) 

Mean 
weight 

(lb) 

Maximum 
weight (lb) 

Standard 
deviation 

(lb) 

15-bar truss 10000 74.692 81.0246 87.4441 3.01 

18-bar truss 10000 4527.96 4575.19 4642.9 31.36 

25-bar truss 10000 117.264 118.98 125.23 2.26 

120-bar dome (Case1) 15000 20016.67 20197.68 20374.4 97.14 

120-bar dome (Case2) 15000 20125.35 20297.51 20484.37 104.09 
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